Influence of Carbon Nano-tube on Combustion, Performance and Emission Parameters of DI CI Engine Fuelled with Blends of Lemongrass Biodiesel
Main Article Content
Abstract
In the present investigation, bio-oil is extracted from lemongrass through steam distillation process, Single stage trans esterification using methanol and potassium hydroxide at molar ration of 1:8 yielded lemongrass biodiesel. The biodiesel was characterized using Gas chromatography Mass spectrometry and Fourier transforms infrared spectrometry analysis and found to have Behenic and Stearic acid in prominent proportions. The cetane number and calorific value was enhanced by ultrasonicating carbon Nano-tubes at various proportions. Kirloskar TV1 compression ignition engine coupled with eddy current dynamometer was employed to analyse the combustion, performance and emission characteristics. Addition of carbon Nano-tubes significantly affected the ignition delay and combustion duration. D80LGB20CNT100 fuel blend exhibited higher in-cylinder pressure up to 65.144 bars along with enhanced rate of heat release upto 73.953 kJ/kg at full load condition. Higher brake thermal efficiency with notable reduction in unburned hydrocarbon and smoke was seen with elevated levels of carbon-monoxide and oxides of nitrogen.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).