Optimization of Passenger Car Door Impact Beam using Quasi Static CAE Analysis
Main Article Content
Abstract
Automotive side impacts are particularly dangerous as location of impact is very close to the passenger, who can be immediately reached by the impacting vehicle. FMVSS 214 static is a US safety regulation for occupant safety during side impacts, in which the vehicle is tested at static loading conditions to measure its load baring capacity and integrity of side closures. The CAE load case, virtually simulating the test, was handled as a quasi-static problem in this study. Impact beam is a component that helps in improving vehicle passive safety performance during side impacts by minimizing door intrusion to the occupant cabin. It plays an important role in achieving side impact regulatory norms. Through this study, a mass optimized front door impact beam design was developed for a passenger car with the help of CAE simulations; FMVSS 214S regulation norms are met. Component thickness, material and cross section shape were the design variables considered for the study. A methodology to perform the component level simulation of the impact beam loading such that it replicates component behaviour during full vehicle simulation was developed. This has helped in reducing the total problem calculation time in solver. This also has minimized the computational cost for the project. CAE simulations required for the study were done using LS-DYNA. ANSA and PRIMER were used as pre-processors and hyper-graph and meta-post were used for post processing.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).