Neural Network Modeling for Face Milling Operation
Main Article Content
Abstract
Milling operation is one of the important manufacturing processes in production industry. Study and analysis of milling process parameters such as spindle speed, feed rate and depth of cut are important for process planning engineers. The responses are temperature, surface roughness, machining time, feed force, thrust force and cutting force. The main aim of this study is to find out the effects of these parameters in face milling operation on Monel k 400 work piece materials with tungsten carbide insert. The theoretical investigation is carried out with neural network modelling and the 3-1-6 structure neural network models are considered. Developed neural network models show best agreement with experimental values. For same type of operation, result of these experiments shall be useful for future research purpose.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).