Mixing Characteristics and Enhancement of Sonic Elliptic Jets from a Twin Elliptic Orifice
Main Article Content
Abstract
The knowledge of jet mixing and its enhancement of elliptic jet are important in a propulsion system of aircraft, rocket, and missile’s system design for advancement of combustion via fuel-air mixture increment, lowering the jet noise and reduction of the plume infrared (IR) signature. The jet issuing from a twin elliptic orifice is non-uniform in shape that promotes the faster mixing and it influences by orifice exit conditions, so knowledge of absence of boundary layer and jet mixing characteristics is important. Hence, an experimental work helps to study the jet mixing for a twin elliptic orifice of aspect ratio two at nozzle pressure ratios of one, two, and three. The proximity between the orifices kept as one to 3mm in steps of one. The experimental readings were taken using pitot probe. The results revealed that jet mixing is faster and effective when the proximity between the orifices is closer to each other than the faraway distances at measured nozzle pressure ratios. Difference in orifice jet core exerted a noticeable influence at high proximity levels of nozzle pressure ratio of three and four for elliptic orifice.
Article Details
Issue
Section
Articles
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).