Synthesis, Microstructure and Wear Analysis of Copper Alloy with Alumina and Graphene as Reinforcement
Main Article Content
Abstract
Hybrid copper alloy composites are widely used in numerous industrial applications, such as aeronautics and automobile, because of their wear resistance and excellent cast ability. They are widely used for high load and low speed application such as stone crushers and earth movers. The pin-on-disc dry sliding wear investigation and microstructure characterization of copper alloy reinforced with Al2O3 and graphene particulates were conducted. Stir casting technique is used to prepare the composites. Wear loss of hybrid composite (Cu alloy + 4wt.% Gr + 4wt.% Al2O3) is compared with Cu alloy, Cu alloy + 4wt.% Gr and Cu alloy + 4wt.% Al2O3. In microstructural analysis SEM and EDS images were assessed to know the distribution uniformness of reinforcement in copper alloy matrix. Dry wear test was carried on pin on disc machine. In the first trial, the sliding speed was kept as constant to 300 rpm and load was varied in range of 1 kg, 2 kg and 3 kg. In the second trial, the load was kept as constant and the sliding speed was varied in range of 100, 200 and 300 rpm. Results in both trials have shown that the wear resistance was increased and wear rate was very low in hybrid composite (Cu alloy + 4wt.% Gr + 4wt.% Al2O3) compared to the other compositions of the tested composites.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).