Numerical Analysis of Flow Characteristics of the Low-Speed Centrifugal Compressor Stage Comprising Wedge Diffuser
Main Article Content
Abstract
Wedge type diffusers are used generally in the highly loaded stages of smaller jet engines as it is compact in size. Low speed centrifugal compressor (LSCC) is selected for this present study as experimental details are available. A centrifugal compressor stage comprising wedge type diffuser is used in this numerical investigation in which studies are carried out at design mass flow rate (30kg/s) and off-design mass flow rates (23.64kg/s and 36.36kg/s) at constant rotational speed of 1920 rpm. Single passage approach is chosen to model the computational domain which is meshed with unstructured grid. Turbulence model chosen is kω-SST. The investigation revealed the jet-wake structure along the pressure side and suction side of the impeller and its subsequently mixing at impeller exit vaneless diffuser region. Diffusion process in the LSCC is observed to be effective as the outlet values of absolute velocity are lesser compared to its inlet values. Highest static pressure rise is observed for design mass flow rate and followed by below and above off-design mass flow rates.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).