Enhancing the Crashworthiness of Passenger Vehicle through Modification of Bumper Beam Design and Energy Absorption Materials
Main Article Content
Abstract
The majority of injuries and deaths are caused by a vehicle accident in the front structure. This research endeavours to systematically refine bumper beam structures through an amalgamation of computational simulations, advanced material selection, and experimental validations. A multifaceted approach is employed, encompassing finite element analysis (FEA) techniques to model and predict crash responses, coupled with iterative design iterations to optimize energy absorption and deformation characteristics. The study delves into the synergistic effects of material properties, geometric parameters, and structural arrangements on crash performance. The results underscore the intricate interplay between structural rigidity, energy absorption, and occupant safety. This work entails designing a car bumper beam in the W section that could withstand a low-impact collision with a new energy absorbing material. The optimized designs exhibit superior crashworthiness metrics, highlighting the potential to significantly mitigate collision-induced forces. This study underscores the imperative for continuous exploration and innovation in bumper beam design to elevate vehicular safety standards and ultimately reduce the human and economic toll of road accident.
Article Details
Issue
Section
Articles
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication, with the work two years after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).